

Research to inform climate adaptation in the Murray-Darling Basin: MD-WERP

David Post

CSIRO ENVIRONMENT www.csiro.au

Presentation overview

- What changes have we seen to date in the Murray-Darling Basin?
- What changes are we likely to see in the future?
- What will be the impact of these changes?
- What research is being carried out in MD-WERP to help understand and mitigate these changes?

Observed climate change in the MDB

Observed trend in mean annual rainfall (1950-2020)

Observed impacts on MDB inflows

Projected climate change impacts on runoff

Water resources sharing in the MDB

Impacts on water availability

The Murray-Darling Water and Environment Research Program

- CSIRO are responsible for two themes comprising research into Hydrology and Climate Adaptation
- An AUD\$11m, 4-year research program
- Co-funded by the Murray-Darling Basin Authority and CSIRO
- Producing research outcomes that will inform the Basin Plan review scheduled for 2026

Low flow prediction [Russell Crosbie, Jahangir Alam]

Changing nature of river and groundwater connection must be adequately modelled to meaningfully predict low flows

Trends in river and groundwater connection

Floodplain inundation and volume

[Jin Teng, Fathata Khanam]

Characterising floodplain inundation under historical and future climates

Modelling floodplain inundation and volume dynamics

1 in 8 year flood inundation frequency

Demonstrating use of water forecasts

15

225

[David Robertson, Andrew Bishop]

Southern Basin case study

Hume Dam release, m³/s

Northern Basin case study

Groundwater use

(Sreekanth Janardhanan, Ema Falez]

Groundwater trend, resilience and opportunities

Potential for managed aquifer recharge

Groundwater resilience, stress and sustainability

Northern Basin hydrology

[Jorge Peña-Arancibia]

Impact of hydrological non-stationarity and changing catchment conditions on runoff

Apr 2002 - Nov 2022

- Water Equivalent Thickness - Land (GRACE, GRACE-FO JPL)

TWS

Evaluation of causes of reduced flow in the northern Murray–Darling Basin

Francis H.S. Chiew, Tony R. Weber, Santosh K. Aryal, David A. Post, Jai Vaze, Hongxing Zheng, Jorge L. Peña-Arancibia, David E. Robertson

Foundational Science

Objective: To improve understanding of the potential indirect impacts of climate change on water supply, demand and management in the Basin

2022/23 activities:

- Finalising farm dam impacts
- Understanding bushfire impacts

223/24 activities:

- Non-stationary hydrological processes
- Blackwater

Climate Adaptation Toolkit

Objective: To develop (and link) tools to understand plausible future changes & the impact of adaptation strategies under a changing climate

2022/23 activities:

- Finalising Values and Vulnerability Assessment
- Toolkit development
- Scoping future modules

2023/24 activites:

- Developing new modules
- Applications for case studies

Showcasing Adaptability

Objective: To identify options to adapt to climate change and evaluate their effectiveness in protecting Basin values

2022/23 activities:

- Hydroclimate analysis case-study
 - Macquarie river catchment
 - Climate variability
 - Climate change
- Scoping water trade case-study

2023/24 activities:

- Adaption options in Macquarie
- Water trade case-study

Synthesis and Integration

Objective: To synthesise outputs and learnings from the main research activities across the Climate Adaptation Theme and maximise relevance to policy makers and practitioners

2022/23 activities:

- Revising "Basin-wide monitoring management framework "
- Planning for Traditional Owner engagement

2023/24 activities:

• Traditional Owner engagement

Original decision-making process

Our vision

Basin Plan (Enhanced water outcome)

Enhancing water outcomes through improved knowledge, improved river operations, improved water management, improved water use efficiency, adaptation.

Basin Plan (Now)

Median climate change

- Same irr/env entitlements (some adaptation)

One of many example scenario/choice

Median climate change

- Changed entitlements to get same environmental outcome

We are developing knowledge, models, and tools to enable evaluation of different options and scenarios.

Questions?

https://getinvolved.mdba.gov.au/murray-darling-water-and-environment-research-program

e david.post@csiro.au

LAND AND WATER www.csiro.au

